Two New Acetylenic Compounds from Asparagus gobicus

Cai Xia YANG, Cheng Shan YUAN, Zhong Jian JIA*
Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

Two new acetylenic compounds were isolated from the roots of Asparagus gobicus. Their structures were elucidated by spectroscopic methods including 2D NMR techniques.

Keywords: Asparagus gobicus, Asparagaceae, acetylenic compounds.

Asparagus gobicus N. Ivan ex. Grubov has been used as a Chinese folk medicine for the treatment of rheumatism, neuritis and sore ${ }^{1}$. Three acetylenic compounds (1, $\mathbf{2}$ and $\mathbf{3}$) have been isolated from this plant, and here the structural elucidation of two new ones (1 and 2) was reported.

The molecular formula $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$ of $\mathbf{1}$ was deduced from HREIMS ([M] ${ }^{+}$at m / z 310.1205 , calcd. 310.1200). Its IR (KBr) spectrum showed the presence of hydroxy group ($3360 \mathrm{~cm}^{-1}$), acetylene bond ($2202 \mathrm{~cm}^{-1}$) and aromatic ring ($1610,1511,1450$ cm^{-1}). The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1}$ (Table 1) gave signals of a p-substituted benzene ring at δ $6.85(4 \mathrm{H}$, overlapped, AA'BB' system) and a 1, 2, 4-trisubstituted benzene ring at $\delta 6.80$ $(\mathrm{d}, 1 \mathrm{H}, 8.1 \mathrm{~Hz}), 6.99(\mathrm{dd}, 1 \mathrm{H}, 1.8,8.1 \mathrm{~Hz})$ and $6.95(\mathrm{~d}, 1 \mathrm{H}, 1.8 \mathrm{~Hz})$, except the signals of two methoxy groups at $\delta 3.90$ and $3.77(\mathrm{~s}$, each 3 H$)$ and an AMX_{2} system at $\delta 4.58(\mathrm{dd}$, $2 \mathrm{H}, 1.8,5.1 \mathrm{~Hz}), 6.03(\mathrm{dt}, 1 \mathrm{H}, 1.8,15.9 \mathrm{~Hz})$ and $6.34(\mathrm{dt}, 1 \mathrm{H}, 5.1,15.9 \mathrm{~Hz})$, confirmed by its ${ }^{13} \mathrm{C}$ NMR and DEPT spectra. Two partial structures of $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}-$ and $-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{C}-$ were deduced from the HMBC correlations: $\mathrm{H}-9 / \mathrm{C}-7,8,10 ; \mathrm{H}-10 / \mathrm{C}-9,8$, 11. Taken into account the other HMBC correlations: $-\mathrm{OCH}_{3}(\delta 3.90, \mathrm{~s}) / \mathrm{C}-1,-\mathrm{OCH}_{3}(\delta$ 3.77 , s)/C-4', H-3/C-2, 4, H-5/C-1, 4, 7; H-9/C-7, 8, 11; H-10/C-8, 11; H-11/C-9, 10, 1', the skeleton of $\mathbf{1}$ was established. The large coupling constant $(15.9 \mathrm{~Hz})$ between $\mathrm{H}-9$

[^0]and $\mathrm{H}-10$ disclosed the trans configuration of the double bond. Comparison of its NMR data with those of $\mathbf{3}^{2}$ indicated $\mathbf{1}$ had two methoxy groups, but $\mathbf{3}$ had one at C-4'. The locations of two methoxy groups in 1 were assigned by its HMBC correlations, further supported by NOE results that the methoxy methyls at $\delta 3.90$ and 3.77 showed effect with their neighboring aromatic proton signals at $\delta 6.99$ (H-6) (11.5\%) and 6.85 (H-3', 5^{\prime}) (10.1%), respectively. Thus, the structure of 1 was elucidated as 1 -methoxy-2-hydroxy-4-[5-(4-methoxy-phenoxy)- 3-penten-1-ynyl] phenol.

From the EIMS (showed $[\mathrm{M}]^{+}$at $\mathrm{m} / \mathrm{z} 296$) and ${ }^{13} \mathrm{C}$ NMR (DEPT) spectral data, the molecular formula $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$ of 2 was assigned. The NMR spectral data (Table 1) of 2 were very similar to those of $\mathbf{1}$ except that $\mathbf{2}$ had only one methoxy group at $\delta 3.89$ (s, 3 H), which suggested they had a similar skeleton. The HMBC spectrum exhibited correlations of $\mathrm{OCH}_{3}(\delta 3.89)$ with C-1 ($\delta 147.7$); H-3 ($\delta 7.00$) with C-2 ($\delta 147.5$), C-4 (δ 114.3); H-6 ($\delta 6.76$) with C-1 ($\delta 147.1$), C-5 ($\delta 125.3$) and hydroxy protons at $\delta 8.01$ and 8.12 with C-2 ($\delta 147.5$) and C-4' ($\delta 152.0$), respectively. The structure of 2 was thus concluded as 1-methoxy-2-hydroxy-4-[5-(4-hydroxyphenoxy)-3-penten-1-ynyl] phenol.

Table $1 \quad{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and DEPT data of $\mathbf{1}$ and $\mathbf{2}\left(\delta \mathrm{ppm}\right.$, TMS, $\left.\mathrm{CDCl}_{3}\right)$

No.	δ_{H}		$\delta_{\mathrm{C}}(\mathrm{DEPT})$		
	1	2	1	2	3
1			147.2 s	147.7s	156.0s
2			145.5 s	147.5 s	114.9d
3	6.95 (d, 1.8)	7.00 (d, 1.8)	117.7 d	114.7 d	133.4d
4			116.0 s	114.3 s	115.7 s
5	6.80 (d, 8.1)	6.94 (dd, 8.4, 1.8)	124.5 d	125.3 d	133.4 d
6	6.99 (dd, 8.1, 1.8)	6.76 (d, 8.4)	110.7 d	115.4d	114.9d
7			90.7 s	91.0 s	90.7 s
8			85.9 s	85.3 s	86.0s
9	6.03 (dt, 1.8, 15.9)	6.07 (dt, 1.8, 6.0)	112.7 d	112.0d	112.7 d
10	6.34 (dt, 5.1, 15.9)	6.34 (dt, 4.8, 6.0)	137.5 d	138.1d	137.4d
11	4.58 (dd, 1.8, 5.1)	4.59 (dd, 1.8, 4.8)	68.7 t	68.3 t	68.7 t
1^{\prime}			152.3 s	151.8s	152.7 s
$2^{\prime}, 6^{\prime}$	6.85 (overlapped)	6.82 (overlapped)	116.2 d	116.0d	116.0d
3', 5'	6.85 (overlapped)	6.82 (overlapped)	114.9 d	115.9d	114.9d
$4{ }^{\prime}$			154.3 s	152.0s	154.3 s
OMe	3.90 (s)	3.89 (s)	56.1 q	55.6 q	56.0 q
OMe	3.77 (s)		56.0 q		

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 29972017).

References

1. Jiangsu New Medical College, The Chinese Medicine Dictionary, Shanghai Science and Technology Publishing House, Shanghai, 1985, p. 4693.
2. K. Terada, C. Honda, K. Suwa, S. Takeyama, et al., Chem. Pharm. Bull. 1995, 43, 564.

Received 17 March, 2004

[^0]: *E-mail:jiazj@1zu.edu.cn

